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Monolithic Front EndsMonolithic Front Ends
• Can be efficiently mass-produced with excellent economy of 

scale:
– E.g., maskset + 10 wafers ~ $100K, 500 chips/wafer
– Additional wafer ~ $5K
– Incremental cost ~ $10/chip
– Chip may have 16 – 128 channels

• Can be located close to dense detector electrode arrays
– pixels, micropattern & segmented cathode designs

• Can combine functions on single chip, replacing 
PCB/hybrid/cable connections with lower cost on-chip 
connection

• Can reduce power*



Cost of InterconnectCost of Interconnect

ISSCC 2000



Custom Custom Monolithics Monolithics ––
technology optionstechnology options

• Bipolar
– Workhorse of “old” analog
– Available from a handful of vendors
– Speed/power advantage over CMOS 

(diminishing)
– Low integration density

• Standard CMOS
– Suitable for most analog designs
– Best for combining analog and 

digital
– Highest integration density
– Widely available
– Short life cycle (3 years/generation)

• BiCMOS
– Complex process, viability uncertain

• Silicon on insulator (SOI)
– Modest speed advantage for digital
– Drawbacks for analog

• SiGe
– Complexity equivalent to BiCMOS
– Extremely fast bipolar device plus 

submicorn CMOS
– Availability increasing

• GaAs
– Unsuitable for wideband analog



Analog CMOS layoutAnalog CMOS layout



Access to Access to Monolithic ProcessesMonolithic Processes

Multiproject (shared wafer) foundry 
runs

In the U.S. 

MOSIS service www.mosis.org

Europe

Europractice www.imec.be/europractice

Design tools

Public domain

MAGIC

bach.ece.jhu.edu/~tim/programs/
magic/magic7.html

vlsi.cornell.edu/magic

Commercial

Cadence www.cadence.com

Mentor www.mentor.com

Tanner www.tanner.com



Preamplifier Design: Front Preamplifier Design: Front 
Transistor OptimizationTransistor Optimization

• For MOSFETs, the input device must be properly dimensioned to 
match Cdet:
– 1/f noise minimized for Cgs = Cdet

– Series thermal noise minimized for Cgs < Cdet, exact value depends on 
Cdet/Id

• For Bipolar transistors, must choose the collector current
– Depends on Cdet/tm

• MOS will have superior noise when 

– tm/τel > βBJT

– kT/KF > βBJT

• Bipolar favored for short shaping, low power.



Preamp Reset Preamp Reset ––
RequirementsRequirements

• all charge preamplifiers need DC 
feedback element to discharge CF

• usually, a resistor in the MΩ – GΩ
range is used

• monolithic processes don’t have 
high value resistors

• we need a circuit that behaves 
like a high resistor and is also 

– insensitive to process, temperature, 
and supply variation

– low capacitance

– lowest possible noise

– linear

Cdet

CF

?

Isig Ileak



Preamp Reset Preamp Reset ––
ConfigurationsConfigurations

✔



Nonlinear PoleNonlinear Pole--zero Compensationzero Compensation

• Classical
– RF · CF = RC ·CC
– Zero created by RC,CC cancels 

pole formed by RF, CF

• IC Version
– CC = N · CF
– (W/L)MC = N · (W/L)MF

– Zero created by MC, CC cancels 
pole formed by MF, CF

– Rely on good matching 
characteristics of CMOS FETs and 
capacitors
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G. Gramegna, P. O’Connor, P. Rehak, S. Hart, “CMOS preamplifier 
for low-capacitance detectors”, NIM-A 390, May 1997, 241 – 250.



Pulse Shaping with Monolithic CircuitsPulse Shaping with Monolithic Circuits
• Passive components in monolithic technology are non-ideal:

– Tolerance typically ±20% from lot to lot.
– Values restricted to C < 50 pF, R < 100K.
– Difficulty in setting accurate filter time constants

• Low supply voltage in submicron CMOS (1.8 – 3.3V)
– Restricts dynamic range

• Feedback circuits give the most stable and precise shaping
– But require more power than other approaches
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CMOS ScalingCMOS Scaling
• Driven by digital VLSI 

circuit needs
• Goals: in  each 

generation
– 2X increase in density
– 1.5X increase in speed
– Control short channel 

effects
– Maintain reliability level 

of < 1 failure in 107

chip-hours

 

2b 64Kb 64Mb 
2.3 mm 2 26 mm 2 198 mm 2

1960s 1980s 1990s 

4004
8008

DRAM

Intel microprocessor



CMOS Technology RoadmapCMOS Technology Roadmap

Year 85 88 91 94 97 00 02 04 07 10 13

Min. feature size [µm] 2 1.5 1.0 0.7 0.5 0.35 0.25 0.18 0.13 0.10 0.07

Gate oxide [nm] 44 33 22 16 11 7.7 5.5 4.0 2.9 2.2 1.6

Power supply [V] 5 5 5 5 5/3.3 3.3 2.5 1.8 1.2 1 .7

Threshold voltage [V] 1.0 0.9 0.8 0.7 0.6 0.5 0.45 0.4 0.3 0.3 0.3





CMOS scaling and charge CMOS scaling and charge 
amplifier performanceamplifier performance

• Fundamental noise mechanisms
– so far, no dramatic changes with scaling

• Noise
– slight improvement with scaling
– higher device fT reduces series thermal noise

• Weak- and moderate inversion operation more common
– need different matching to detector capacitance.

• Reduced supply voltage
– difficult to get high dynamic range

• Many difficulties with “end of the roadmap” devices

P. O’Connor, G. DeGeronimo, “Charge amplifiers in scaled 
CMOS”, NIM-A accepted for publication



Impact of technology scaling on charge Impact of technology scaling on charge 
amplifier performanceamplifier performance
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Drift Detector PreamplifierDrift Detector Preamplifier

• Used with ultra-low capacitance 
silicon drift detector, Cdet < 0.3 pF

• Preamp only, used with external 
shaper

• Purpose: explore lowest noise 
possible with CMOS

• Reset system: MOS transistor with 
special bias circuit to achieve 
stable, > 100 GΩ equivalent 
resistance

Detector



Drift detector preamplifier Drift detector preamplifier ––
simplified schematicsimplified schematic



Drift Detector & CMOS Drift Detector & CMOS 
PreamplifierPreamplifier



Drift detector preamplifier Drift detector preamplifier –– resultsresults

• Spectra of 241Am  and 55Fe taken with 5mm Φ Si drift detector and 
CMOS X-ray preamplifier. Detector and circuit cooled to -75 C. 

• External 2.4 µs shaping.
• ENC = 13 e- rms.
• Noise without detector: 9 e-

P. O'Connor et.al., "Ultra Low Noise CMOS Preamplifier-shaper for 
X-ray Spectroscopy", NIM A409 (1998), 315-321



Time Expansion Chamber & Time Expansion Chamber & 
Transition Radiation Detector Transition Radiation Detector 

Preamp/ShaperPreamp/Shaper

• 1m MWPC with 
20 pF CDET

• Fast (70 ns) 
shaping for 
charged particle 
tracking

• Dual gain outputs 
for measurement 
of dE/dx and 
Transition 
Radiation



TECTEC--TRD Preamp/ShaperTRD Preamp/Shaper

Block Diagram Die Layout

X-ray Response

A. Kandasamy, E. O’Brien, P. O’Connor, W. VonAchen, “A 
monolithic preamplifier-shaper for measurement of energy loss and 
transition radiation” IEEE Trans. Nucl. Sci. 46(3), June 1999, 150-155



Silicon Vertex Tracker Silicon Vertex Tracker 
Preamp/ShaperPreamp/Shaper

• Direct connection to low-
capacitance (3 pF) silicon drift 
detector 

• Fast shaping (50 ns) for tracking
• Low power requirement (< 5 

mW/chan.)
• Silicon bipolar technology



SVT Preamp/ShaperSVT Preamp/Shaper
Die Layout Output Waveform



D. Lynn et al., “A 240 channel thick film multi-chip module for readout of silicon 
drift detectors”, NIM A439 (2000), 418 - 426

SVT 240SVT 240--channel Multichannel Multi--Chip Chip 
ModuleModule



PROJECT Hi-res. 
Spectroscopy 

RHIC – PHENIX RHIC – STAR LHC – ATLAS Industry 
Partnership 

NSLS – HIRAX Units 

DETECTOR Si drift Time Expansion 
Chamber 

Silicon Vertex 
Tracker 

Cathode Strip 
Chamber 

CdZnTe gamma 
ray detector 

Si Pixel  

Function Preamp Preamp/Shaper Preamp/Shaper Preamp/Shaper Preamp/Shaper Preamp/Shaper/
Counter 

 

CDET 0.3  30 3 50 3 1.5 pF 
Peaking 
Time 

2400 70 50 70 600:1200:2000:4
000 

500:1000:2000:4
000 

ns 

Gain 10 2.4:12 – 10/25 40:70:90 4 30:50:100:200 750:1500 mV/fC 
Power 10 30 3.8 33 18 7 mW/channel 
ENC 10 1250 400 2000 100 24 rms electrons 
Dynamic 
Range 

1250 4600 700 1900 5600   

Technology CMOS 1.2 um CMOS 1.2 um Bipolar 4 GHz CMOS 0.5 um CMOS 0.5 um CMOS 0.35 um  
Input 
Transistor 

PMOS  
150/1.2 um 

NMOS  
4200/1.2 um 

NPN 
10 uA 

NMOS 
5000/0.6 um 

NMOS 
200/0.6 um 

PMOS 
400/0.4 um 

 

Reset 
Scheme 

Compensated 
PMOS, > 1GΩ 

Polysilicon, 
 75 kΩ  

Nwell,  
250 kΩ 

Compensated 
NMOS, 30 MΩ 

Compensated 
PMOS 

Compensated 
NMOS 

 

No. 
Channels 

6 8 16 24 16 32  

Die Size 7.3 15 8 20 19 16 mm2 
 

BNL Preamp/Shaper ICs, 1995 BNL Preamp/Shaper ICs, 1995 -- 20012001



• Preamplifier reset
• High order filters
• Programmable pulse 

parameters
• Circuit robustness:

– Self-biasing
– Low-swing,differential I/O

– Circuits tolerant to variations in
• Temperature
• Process 
• Power supply
• DC leakage current
• Loading

• Preamplifier reset
• High order filters
• Programmable pulse 

parameters
• Circuit robustness:

– Self-biasing
– Low-swing,differential I/O

– Circuits tolerant to variations in
• Temperature
• Process 
• Power supply
• DC leakage current
• Loading

Practical amplifier considerationsPractical amplifier considerations
Pulse vs. Temperature
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G. De Geronimo et.al., “A generation of CMOS readout ASICs for CZT detectors", IEEE Trans. Nucl. Sci. 47, Dec. 2000, 1857 - 1867



TEC FrontTEC Front--End CardEnd Card



What goes between the What goes between the 
preamp/shaper and the ADC?preamp/shaper and the ADC?

• Experimental needs differ
– number of channels

– occupancy

– rate 

– trigger 

• Usually, its too expensive to put an ADC per channel

• Anyway the ADC would usually not be doing anything useful
– Occupancy < 100%, so no events most of the time in most channels

• What is the most efficient way to use the ADC(s)?



Analog Sampling and Analog Sampling and 
MultiplexingMultiplexing

Track/Hold

Inputs

Select

Multiplexed
Output

Sampling
Capacitor

... ...
Sampling Clocks

Inputs

Channel

Multiplexed
Output

Sampling
Capacitors

... ...

...

...

...

...

Track-and-hold
(triggered systems)

Analog memory
(non-triggered)



New Peak Detector and New Peak Detector and 
DerandomizerDerandomizer

• Self-triggered
• Self-sparsifying
• New 2-phase configuration allows 

rail-to-rail operation, eliminates 
offsets
– absolute accuracy ~ 0.2%
– to within 300 mV of rails

• Two or more peak detectors in 
parallel can be used to derandomize 
events

– If a second pulse arrives before the 
readout of the first pulse in Pd-a, it is 
detected and stored on Pd-b.
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First experimental resultsFirst experimental results
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Time, us

READ

PDD OUT
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PK FND

Accuracy of single PD PD/D response to random
pulse train (241Am on CZT)

G. DeGeronimo, P. O’Connor, A. Kandasamy,  “Analog Peak Detect 
and Hold Circuits Part 2: The Two-Phase Offset-Free and 
Derandomizing Configurations”, NIM-A submitted for publication
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Summary and Future Summary and Future 
DirectionsDirections

• Today’s monolithic technology can be used effectively for low-
noise front ends.

• Technology scaling, by reducing the area and power per 
function, wil allow increasingly sophisticated signal processing 
on a single die.

• Integrated sensors will be developed for some X-ray and 
charged-particle tracking applications.

• Interconnecting the front end to the detector and to the rest of
the system will continue to pose challenges.


